Abstract: 431

Diagnosis of acute myocardial infarction in the presence of left bundle-branch block

Authors:
T Nestelberger1, LC Cullen2, BL Lindahl3, TR Reichlin4, JG Greenslade2, EG Giannitsis5, BM Morawiec6, OM Miro7, JM Martin Sanchez8, JB Boeddinghaus1, DW Wussler1, LK Koechlin1, RT Twerenbold1, MT Than9, CM Mueller1, 1University Hospital Basel, Cardiovascular Research Institute Basel - Basel - Switzerland, 2Royal Brisbane and Women's Hospital, Emergency medicine - Brisbane - Australia, 3Uppsala Clinical Research Center - Uppsala - Sweden, 4Bern University Hospital - Bern - Switzerland, 5University Hospital of Heidelberg - Heidelberg - Germany, 62nd Department of Cardiology, School of Medicine with the Division of Dentistry - Zabrze - Poland, 7Hospital Clinic de Barcelona - Barcelona - Spain, 8Hospital Clinic San Carlos - Madrid - Spain, 9Christchurch Hospital - Christchurch - New Zealand,

On behalf: APACE, ADAPT and TRAPID AMI Investigators

Topic(s):
Acute Coronary Syndromes – Diagnostic Methods

Citation:
Aims: To develop novel strategies for early diagnosis of acute myocardial infarction (AMI) in patients with left bundle branch block (LBBB).

Methods: We prospectively evaluated incidence of AMI, and diagnostic performance of specific electrocardiographic (ECG) (Sgarbossa and modified Sgarbossa) and high-sensitivity cardiac troponin (hs-cTn) criteria in patients presenting with chest discomfort to 26 emergency departments in three international, prospective, diagnostic studies. Presence of LBBB, ECG criteria, and final diagnoses were centrally adjudicated by two independent cardiologists.

Results: Among 8830 patients, LBBB was present in 247 patients (2.8%). AMI was the final diagnosis in 30% of patients with LBBB, with similar incidence in those with known LBBB versus those with presumably new LBBB (29% vs 35%, p=0.42). ECG criteria had low sensitivity (1-12%), but high specificity (95-100%). The diagnostic accuracy as quantified by the receiver-operating-characteristics curve of hs-cTnT and hs-cTnI concentrations at presentation (AUC 0.91; 95%CI 0.85–0.96 and 0.89; 95% CI 0.83-0.95) as well as that of their 0/1h and 0/2h changes was very high. A diagnostic algorithm combining ECG criteria with hs-cTnT/I concentrations and their absolute changes at 1h or 2h derived in cohort 1 (45 of 45 (100%) of patients with AMI correctly identified, Figure), showed high efficacy and accuracy when externally validated in cohort 2&3.

Conclusion: Most patients presenting with suspected AMI and LBBB will be found to have diagnoses other than AMI. Combing ECG criteria with Hs-cTn testing at 0/1h or 0/2h allows early and accurate diagnosis of AMI in LBBB.
Aims: To develop novel strategies for early diagnosis of acute myocardial infarction (AMI) in patients with left bundle branch block (LBBB).

Methods: We prospectively evaluated incidence of AMI, and diagnostic performance of specific electrocardiographic (ECG) (Sgarbossa and modified Sgarbossa) and high-sensitivity cardiac troponin (hs-cTn) criteria in patients presenting with chest discomfort to 26 emergency departments in three international, prospective, diagnostic studies. Presence of LBBB, ECG criteria, and final diagnoses were centrally adjudicated by two independent cardiologists.

Results: Among 8830 patients, LBBB was present in 247 patients (2.8%). AMI was the final diagnosis in 30% of patients with LBBB, with similar incidence in those with known LBBB versus those with presumably new LBBB (29% vs 35%, p=0.42). ECG criteria had low sensitivity (1–12%), but high specificity (95–100%). The diagnostic accuracy as quantified by the receiver-operating-characteristics curve of hs-cTnT and hs-cTnI concentrations at presentation (AUC 0.91; 95%CI 0.85–0.96 and 0.89; 95% CI 0.83–0.95) as well as that of their 0/1h and 0/2h changes was very high. A diagnostic algorithm combining ECG criteria with hs-cTnT/I concentrations and their absolute changes at 1h or 2h derived in cohort 1 (45 of 45 (100%) of patients with AMI correctly identified, Figure), showed high efficacy and accuracy when externally validated in cohort 2&3.

Conclusion: Most patients presenting with suspected AMI and LBBB will be found to have diagnoses other than AMI. Combing ECG criteria with Hs-cTn testing at 0/1h or 0/2h allows early and accurate diagnosis of AMI in LBBB.