Abstract: 1078

Spontaneous remission of intramyocardial dissecting hematoma: serial assessment with multimodality imaging

Authors:
N Yamaguchi¹, S Okada¹, K Koshino¹, T Oshima¹, K Hiroe¹, T Ohta¹, Matsue City Hospital, Division of cardiology - Matsue - Japan,

Topic(s):
Echocardiography: Masses and Sources of Emboli

Citation:
European Heart Journal - Cardiovascular Imaging (2019) 20 (Supplement 1), i736

A 63-years-old man with a history of type 2 diabetes mellitus, hypertension, dyslipidemia, and smoking was admitted to our hospital due to chest pain on exertion from a month and exacerbation of dyspnea from 10 days ago. The electrocardiogram showed QS pattern and ST elevation in V2-5. Transthoracic echocardiography (TTE) revealed moderate left ventricular (LV) enlargement and severe LV systolic dysfunction (LV ejection fraction 20%) with apical aneurysm and anteroseptal and anteropical wall akinesis. At the apical and septal region, a large thrombus-like heterogeneous mass surrounded by a thin endomyocardial border was visualized. Color-Doppler interrogation did not demonstrate any flow within that structure. These findings suggested an intramyocardial dissecting hematoma (IDH) with myocardial infarction. Cardiac CT imaging revealed an apical intramyocardial hematoma that involved the major part of the LV apical aneurysm, clearly delimited by endocardium toward LV cavity confirming the diagnosis of IDH. Because the patient’s hemodynamic status was stable, we initially adopted a conservative approach with anticoagulant treatment. Serial TTE revealed changes in the size and the acoustic character of the hematoma. Cardiac CT and MRI imaging confirmed an almost complete resolution of IDH and adhesion of the surrounding myocardial layers at 86 days after hospitalization. IDH is a rare but potentially fatal complication of myocardial infarction, which is caused by hemorrhage dissection among the spiral myocardial fibers, creating neocavitation. Although usefulness of surgical treatment has been reported, some cases showing a good course due to conservative treatment have been reported. In the light of recent studies, some IDH patients with clinical and hemodynamic stability can be treated conservatively, with multi-modality imaging to confirm the complete clotting of the dissecting hematoma and the absence of other mechanical complications.
Abstract: Spontaneous remission of intramyocardial dissecting hematoma: serial assessment with multimodality imaging.

Authors: N Yamaguchi, S Okada, K Koshino, T Oshima, K Hiroe, T Ohta

Intramyocardial dissecting hematoma (IDH) is a rare but potentially fatal complication of myocardial infarction, which is caused by hemorrhage dissection among the spiral myocardial fibers, creating neocavitation. Although usefulness of surgical treatment has been reported, some cases showing a good course due to conservative treatment have been reported. In the light of recent studies, some IDH patients with clinical and hemodynamic stability can be treated conservatively, with multi-modality imaging to confirm the complete clotting of the dissecting hematoma and the absence of other mechanical complications.

A 63-years-old man with a history of type 2 diabetes mellitus, hypertension, dyslipidemia, and smoking was admitted to our hospital due to chest pain on exertion from a month and exacerbation of dyspnea from 10 days ago. The electrocardiogram showed QS pattern and ST elevation in V2-5. Transthoracic echocardiography (TTE) revealed moderate left ventricular (LV) enlargement and severe LV systolic dysfunction (LV ejection fraction 20%) with apical aneurysm and anteroseptal and anterofacial wall akinesis. At the apical and septal region, a large thrombus-like heterogeneous mass surrounded by a thin endomyocardial border was visualized. Color-Doppler interrogation did not demonstrate any flow within that structure. These findings suggested an intramyocardial dissecting hematoma (IDH) with myocardial infarction. Cardiac CT imaging revealed an apical intramyocardial hematoma that involved the major part of the LV apical aneurysm, clearly delimitated by endocardium toward LV cavity confirming the diagnosis of IDH. Because the patient's hemodynamic status was stable, we initially adopted a conservative approach with anticoagulant treatment. Serial TTE revealed changes in the size and the acoustic character of the hematoma. Cardiac CT and MRI imaging confirmed an almost complete resolution of IDH and adhesion of the surrounding myocardial layers at 86 days after hospitalization.