Abstract: **P3120**

Prevention of heart failure in treatments with trastuzumab and anthracyclines: a meta-analysis

Authors:
C Lewinter¹, LR Edfors¹, TH Nielsen², E Hedayati¹, L Kober³, F Braunschweig¹, A Mansson-Broberg¹, ¹Karolinska University Hospital - Stockholm - Sweden, ²Rigshospitalet - Copenhagen University Hospital, Hematology - Copenhagen - Denmark, ³Rigshospitalet - Copenhagen University Hospital, Heart Centre - Copenhagen - Denmark,

Topic(s):
Cardiotoxicity of Drugs and Other Therapies

Citation:

Background:
Trastuzumab and anthracyclines are conventional chemotherapies used in breast cancer. Unfortunately, they are associated with a decrease in left ventricular function potentially leading to heart failure (HF). In order to prevent this, randomised controlled trials (RCTs) assess the preventive effect of concomitant beta-blocker (BB), angiotensin receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) therapy during chemotherapy.

Purpose:
To assess the preventive effect of BB, ARB or ACEIs on left ventricular ejection fraction (LVEF) during trastuzumab and anthracycline treatment in patients without HF.

Methods:
Our primary outcomes were the effect of BBs or ARB/ACEIs during 1) trastuzumab and 2) anthracycline treatment.

Secondary outcomes were the distinct effects of 1) BBs and 2) ARB/ACEIs in either trastuzumab or anthracycline treatments.

Through the search term "(RCTs), prevention, cancer chemotherapy and cardiotoxicity" in PubMed, studies were selected, excluding those without randomising to a BB, ARB/ACEI and a placebo control group during chemotherapy.

Means of the LVEF and the standard deviation (SD) post-chemotherapy were applied.

Meta-analyses estimated the standardised mean difference (SMD) in the LVEF.

Heterogeneity was calculated as the I².

Results:
A total of 7 studies (Table 1) were included in the analysis. Between 93 and 100% were woman. Age varied from 41 to 51 years. Treatment time varied from 12 to 52 weeks.

Concomitant BB or ARB/ACEI therapy during trastuzumab treatment was not associated with the LVEF, significantly (Fig. 1A; p=0.07). Oppositely, in the anthracycline regime the LVEF remained significant higher in the concomitant BB and ARB/ACEI groups as compared to controls (Fig. 1B).

BB and ARB/ACEI separation in the analysis showed both to influence the LVEF positively independent of chemotherapy (P=0.03 & p=0.005).

Conclusions:
Concomitant BB and ARB/ACEI therapy both favoured maintenance of the LVEF during trastuzumab and anthracyclines regimens as compared to controls.
Abstract: P3120
Prevention of heart failure in treatments with trastuzumab and anthracyclines: a meta-analysis

Authors:
C Lewinter¹, LR Edfors¹, TH Nielsen², E Hedayati¹, L Kober³, F Braunschweig¹, A Mansson-Broberg¹
¹Karolinska University Hospital - Stockholm - Sweden, ²Rigshospitalet - Copenhagen University Hospital, Hematology - Copenhagen - Denmark, ³Rigshospitalet - Copenhagen University Hospital, Heart Centre - Copenhagen - Denmark

Topic(s): Cardiotoxicity of Drugs and Other Therapies

Citation:

Background: Trastuzumab and anthracyclines are conventional chemotherapies used in breast cancer. Unfortunately, they are associated with a decrease in left ventricular function potentially leading to heart failure (HF). In order to prevent this, randomised controlled trials (RCTs) assess the preventive effect of concomitant beta-blocker (BB), angiotensin receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) therapy during chemotherapy.

Purpose: To assess the preventive effect of BB, ARB or ACEIs on left ventricular ejection fraction (LVEF) during trastuzumab and anthracycline treatment in patients without HF.

Methods: Our primary outcomes were the effect of BBs or ARB/ACEIs during 1) trastuzumab and 2) anthracycline treatment. Secondary outcomes were the distinct effects of 1) BBs and 2) ARB/ACEIs in either trastuzumab or anthracycline treatments. Through the search term "(RCTs), prevention, cancer chemotherapy and cardiotoxicity" in PubMed, studies were selected, excluding those without randomising to a BB, ARB/ACEI and a placebo control group during chemotherapy. Means of the LVEF and the standard deviation (SD) post-chemotherapy were applied. Meta-analyses estimated the standardised mean difference (SMD).

Heterogeneity was calculated as the I².

Results: A total of 7 studies (Table 1) were included in the analysis. Between 93 and 100% were women. Age varied from 41 to 51 years. Treatment time varied from 12 to 52 weeks.

Concomitant BB or ARB/ACEI therapy during trastuzumab treatment was not associated with the LVEF, significantly (Fig. 1A; p=0.07). Oppositely, in the anthracycline regime the LVEF remained significantly higher in the concomitant BB and ARB/ACEI groups as compared to controls (Fig. 1B).

BB and ARB/ACEI separation in the analysis showed both to influence the LVEF positively independent of chemotherapy (P=0.03 & p=0.005).

Conclusions: Concomitant BB and ARB/ACEI therapy both favoured maintenance of the LVEF during trastuzumab and anthracyclines regimens as compared to controls.

Study reference
Year Chemotherapies Preventive drugs
Gulati et al., “Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy (PRADA).” 2016 Trastuzumab Candesartan, metoprolol
Boekhout et al., “Angiotensin II-Receptor Inhibition With Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients With Early Breast Cancer: A Randomized Clinical Trial.” 2016 Trastuzumab Candesartan
Janbabai et al., “Effect of Enalapril on Preventing Anthracycline-Induced Cardiomyopathy.” 2017 Anthracycline Enalapril
Nabati et al., “Cardioprotective Effects of Carvedilol in Inhibiting Doxorubicin-Induced Cardiotoxicity.” 2017 Anthracycline Carvedilol
Boekhout et al., “Angiotensin II-Inhibition With Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients With Early Breast Cancer: A Randomized Clinical Trial.” 2016 Anthracycline Carvedilol
Kaya et al., “Protective Effects of Nebivolol against Anthracycline-Induced Cardiomyopathy: A Randomized Control Study.” 2013 Anthracycline Nebivolol

Fig. 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Trastuzumab</th>
<th>Anthracycline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jazdzewski et al. [1]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Gou et al. [2]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Kaya et al. [3]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Boekhout et al. [4]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Kaya et al. [5]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Janbabai et al. [1]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Gou et al. [2]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Kaya et al. [3]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Boekhout et al. [4]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
<tr>
<td>Kaya et al. [5]</td>
<td>69.6 ± 4.7 (n=204)</td>
<td>69.6 ± 4.7 (n=204)</td>
</tr>
</tbody>
</table>

A: Trastuzumab
Randomised to ARB/ACEI[1] and BB[2]