Abstract: P4500

Cellular senescence of endothelial cells impairs angiogenesis by altering energy metabolism through p53-tigar axis

Authors:
R. Urata¹, K. Ikeda², T. Nakagawa³, A. Hoshino¹, S. Honda¹, N. Yagi¹, N. Emoto², S. Matoba¹, ¹Kyoto Prefectural University of Medicine, Department of Cardiovascular Medicine - Kyoto - Japan, ²Kobe Pharmaceutical University, Laboratory of Clinical Pharmaceutical Science - Kobe - Japan, ³University of Toyama, Department of Metabolism and Nutrition - Toyama - Japan,

Topic(s):
Basic Science - Cardiovascular Development and Anatomy: Stem Cells, Cell Cycle, Cell Senescence, Cell Death

Citation:
European Heart Journal (2019) 40 (Supplement), 2721

Background: Ischemic disease is prevalent in elderly population due to impaired angiogenesis. Endothelial cell (EC) generates energy largely via glycolysis, which is further activated when angiogenesis actively occurs. PFK-1 is one of the most important regulatory enzymes for glycolysis, which is activated by PFKFB3. On the other hand, TIGAR inhibits PFK-1 under the control of p53. Crucial roles of PFKFB3 in EC functions under physiological and pathological conditions have been reported; however, a role of TIGAR in EC angiogenic functions remains to be elucidated. Furthermore, it remains unknown whether and how cellular senescence affect the energy metabolism in EC.

Purpose: The purpose of this study is to investigate molecular mechanisms underlying EC dysfunction associated with ageing, especially by focusing on endothelial energy metabolism.

Method and result: Senescent EC showed reduced glucose consumption assessed by [U-13C]-glucose tracer assay in association with increased expression of p53 and TIGAR. Angiogenic capacity assessed by tube-formation assay was reduced in senescent EC. Of note, either silencing of TIGAR by siRNA or lentivirus-mediated overexpression of PFKFB3 improved angiogenic capacity in senescent EC. These results collectively suggest that senescence impairs glycolysis in EC by activating p53-TIGAR axis, which leads to senescence-associated endothelial dysfunction. To analyze an impact of EC senescence in angiogenesis in vivo, we generated EC-specific progeroid mice in which dominant negative form of telomere repeat-binding factor 2 (TRF2) was overexpressed in EC under the control of the TIE2 promoter. After confirming EC-specific senescence in these endothelial progeroid mice, we generated hind-limb ischemia model. Recovery of blood flow assessed by laser doppler velocimeter was significantly impaired in endothelial progeroid mice, indicating that EC senescence is directly and causally implicated in age-related angiogenic dysfunction. Of note, genetic inactivation of TIGAR completely rescued the impaired ischemia-induced neovessel formation in EC-specific progeroid mice.

Conclusion: Using unique endothelial progeroid mice, we revealed that EC senescence is a bona fide risk for ischemic disease, largely by reducing glycolysis in EC through p53-TIGAR axis. Our data suggest that endothelial energy metabolism is an attracting therapeutic target for the prevention and/or treatment of ischemic diseases, especially in elderly population.