Abstract: P6562
The relationship between serum potassium concentrations and electrocardiographic characteristics in 163,547 individuals from primary care

Authors:
M.L. Krogager¹, K. Kragholm², R.K. Skals², R.N. Mortensen², C. Polewiartek², C. Graft³, J.B. Nielsen⁴, J.K. Kanters⁵, A.G. Holst⁶, P. Soegaard², A.H. Pietersen⁷, C. Torp-Pedersen², S.M. Hansen², ¹Aalborg University Hospital, Unit of Epidemiology and Biostatistics - Aalborg - Denmark, ²Aalborg University Hospital - Aalborg - Denmark, ³Aalborg University - Aalborg - Denmark, ⁴Division of Cardiovascular Medicine, Department of Internal Medicine - Michigan - United States of America, ⁵University of Copenhagen, Laboratory of experimental cardiology - Copenhagen - Denmark, ⁶Rigshospitalet - Copenhagen University Hospital, Cardiology - Copenhagen - Denmark, ⁷Hillerod Hospital, Cardiology - Hillerod - Denmark,

Topic(s):
Arrhythmias, General – Prevention

Citation:
European Heart Journal (2019) 40 (Supplement), 4158

Aims: Potassium disturbances are common and associated with increased morbidity and mortality, even in patients without prior cardiovascular disease. We examined six electrocardiographic (ECG) measures and their association to serum potassium levels.

Methods and results: From the Copenhagen General Practitioners' Laboratory, we identified 163,547 individuals aged ≥16 years with a first available ECG and a concomitant serum potassium measurement during 2001–2011. Restricted cubic splines curves showed a non-linear relationship between potassium and the Fridericia corrected QT (QTcF) interval, T-wave amplitude, morphology combination score (MCS), PR interval, P-wave amplitude and duration. Therefore, potassium was stratified in two intervals K: 2.0–4.1 mmol/L and 4.2–6.0 mmol/L for further analyses. Within the low potassium range, we observed: QTcF was 12.5 ms longer for each mmol/L decrease in potassium (p<0.0001); T-wave amplitude was 55.1 μV lower for each mmol/L decrease in potassium (p<0.0001); and MCS was 0.09 higher per mmol/L decrease in potassium (p<0.001). Moreover, P-wave duration and PR interval were prolonged by 3.1 and 3.3 ms for each mmol/L decrease in potassium (p<0.0001), respectively. Within the lowest potassium range (2.0–4.1 mmol/L) P-wave amplitude was 10.7 μV higher for each mmol/L decrease in potassium (p<0.0001). Within the high potassium range associations with the above-mentioned ECG parameters were much weaker.

Conclusion: The association of potassium with six commonly measured ECG parameters was non-linear. Strong associations between ECG abnormalities and potassium were seen among individuals with lower potassium levels (≤4.1 mmol/L).
Abstract: P6562
The relationship between serum potassium concentrations and electrocardiographic characteristics in 163,547 individuals from primary care.

Aims: Potassium disturbances are common and associated with increased morbidity and mortality, even in patients without prior cardiovascular disease. We examined six electrocardiographic (ECG) measures and their association to serum potassium levels.

Methods and results: From the Copenhagen General Practitioners’ Laboratory, we identified 163,547 individuals aged ≥16 years with a first available ECG and a concomitant serum potassium measurement during 2001–2011. Restricted cubic splines curves showed a non-linear relationship between potassium and the Fridericia corrected QT (QTcF) interval, T-wave amplitude, morphology combination score (MCS), PR interval, P-wave amplitude and duration. Therefore, potassium was stratified in two intervals K: 2.0–4.1 mmol/L and 4.2–6.0 mmol/L for further analyses. Within the low potassium range, we observed: QTcF was 12.5 ms longer for each mmol/L decrease in potassium (p<0.0001); T-wave amplitude was 55.1 μV lower for each mmol/L decrease in potassium (p<0.0001); and MCS was 0.09 higher per mmol/L decrease in potassium (p<0.001). Moreover, P-wave duration and PR interval were prolonged by 3.1 and 3.3 ms for each mmol/L decrease in potassium (p<0.0001), respectively. Within the lowest potassium range (2.0–4.1 mmol/L) P-wave amplitude was 10.7 μV higher for each mmol/L decrease in potassium (p<0.0001). Within the high potassium range associations with the above-mentioned ECG parameters were much weaker.

Conclusion: The association of potassium with six commonly measured ECG parameters was non-linear. Strong associations between ECG abnormalities and potassium were seen among individuals with lower potassium levels (≤4.1 mmol/L).

Restricted cubic splines on adjusted lin.