Abstract: P2723

Diagnosis of acute myocardial infarction in the presence of left bundle-branch block

Authors: T Nestelberger1, L Cullen2, B Lindahl3, T Reichlin4, J Greenslade2, E Giannitsis5, B Morawiec6, L Koechlin1, R Twerenbold1, J Boeddinghaus1, M Rubini1, S Osswald1, J Pickering7, M Than7, C Mueller1. 1University Hospital Basel, Cardiovascular Research Institute Basel - Basel - Switzerland, 2Royal Brisbane and Women's Hospital - Brisbane - Australia, 3Uppsala University Hospital - Uppsala - Sweden, 4Preventive Cardiology & Sports Medicine, Inselspital Bern - Bern - Switzerland, 5University Hospital of Heidelberg - Heidelberg - Germany, 6Silesian Center for Heart Diseases (SCHD) - Zabrze - Poland, 7Christchurch Hospital - Christchurch - New Zealand.

On behalf: APACE, ADAPT, TRAPID AMI Investigators

Topic(s): Coronary Artery Disease : Noninvasive Diagnostic Methods

Citation: European Union, Swiss National Foundation, University Hospital Basel, University Basel

Objective: Patients with suspected acute myocardial infarction (AMI) in the setting of left bundle branch block (LBBB) present an important diagnostic and therapeutic challenge to the clinician.

Methods: We prospectively evaluated incidence of AMI, and diagnostic performance of specific electrocardiographic (ECG) and high-sensitivity cardiac troponin (hs-cTn) criteria in patients presenting with chest discomfort to 26 emergency departments in three international, prospective, diagnostic studies. Presence of LBBB, ECG criteria, and final diagnoses were centrally adjudicated by two independent cardiologists using the fourth universal definition of myocardial infarction.

Results: Among 8830 patients, LBBB was present in 247 patients (2.8%). AMI was the final diagnosis in 30% of patients with LBBB, with similar incidence in those with known LBBB versus those with presumably new LBBB (29% vs 35%, p=0.42). ECG criteria had low sensitivity (1-12%), but high specificity (95-100%). The diagnostic accuracy as quantified by the receiver-operating-characteristics curve of hs-cTnT and hs-cTnI concentrations at presentation (AUC 0.91; 95%CI 0.85–0.96 and 0.89; 95% CI 0.83-0.95) as well as that of their 0/1h and 0/2h changes was very high. A diagnostic algorithm (Figure 1) combining ECG criteria with hs-cTnT/I concentrations and their absolute changes at 1h or 2h derived in cohort 1 (45 of 45 (100%) of patients with AMI correctly identified), showed high efficacy and accuracy when externally validated in cohort 2&3 (28 of 29 patients, 97%).

Conclusion: Most patients presenting with suspected AMI and LBBB will be found to have diagnoses other than AMI. Combining ECG criteria with Hs-cTn testing at 0/1h or 0/2h allows early and accurate diagnosis of AMI in LBBB.
Abstract:

Diagnosis of acute myocardial infarction in the presence of left bundle-branch block

Authors:
T Nestelberger, L Cullen, B Lindahl, T Reichlin, J Greenslade, E Giannitsis, B Morawiec, L Koechlin, R Twerenbold, J Boeddinghaus, M Rubini, S Osswald, J Pickering, M Than, C Mueller

University Hospital Basel, Cardiovascular Research Institute Basel - Basel - Switzerland, Royal Brisbane and Women's Hospital - Brisbane - Australia, Uppsala University Hospital - Uppsala - Sweden, Preventive Cardiology & Sports Medicine, Inselspital Bern - Bern - Switzerland, University Hospital of Heidelberg - Heidelberg - Germany, Silesian Center for Heart Diseases (SCHD) - Zabrze - Poland, Christchurch Hospital - Christchurch - New Zealand

On behalf: APACE, ADAPT, TRAPID AMI Investigators

Topic(s): Coronary Artery Disease: Noninvasive Diagnostic Methods

Citation:

Funding Acknowledgements:

European Union, Swiss National Foundation, University Hospital Basel, University Basel

Objective: Patients with suspected acute myocardial infarction (AMI) in the setting of left bundle-branch block (LBBB) present an important diagnostic and therapeutic challenge to the clinician.

Methods: We prospectively evaluated incidence of AMI, and diagnostic performance of specific electrocardiographic (ECG) and high-sensitivity cardiac troponin (hs-cTn) criteria in patients presenting with chest discomfort to 26 emergency departments in three international, prospective, diagnostic studies. Presence of LBBB, ECG criteria, and final diagnoses were centrally adjudicated by two independent cardiologists using the fourth universal definition of myocardial infarction.

Results: Among 8830 patients, LBBB was present in 247 patients (2.8%). AMI was the final diagnosis in 30% of patients with LBBB, with similar incidence in those with known LBBB versus those with presumably new LBBB (29% vs 35%, p=0.42). ECG criteria had low sensitivity (1-12%), but high specificity (95-100%). The diagnostic accuracy as quantified by the receiver-operating-characteristics curve of hs-cTnT and hs-cTnI concentrations at presentation (AUC 0.91; 95% CI 0.85–0.96 and 0.89; 95% CI 0.83–0.95) as well as that of their 0/1h and 0/2h changes was very high. A diagnostic algorithm (Figure 1) combining ECG criteria with hs-cTn testing at 0/1h or 0/2h derived in cohort 1 (45 of 45 (100%) of patients with AMI correctly identified), showed high efficacy and accuracy when externally validated in cohort 2&3 (28 of 29 patients, 97%).

Conclusion: Most patients presenting with suspected AMI and LBBB will be found to have diagnoses other than AMI. Combining ECG criteria with Hs-cTn testing at 0/1h or 0/2h allows early and accurate diagnosis of AMI in LBBB.