Reliable detection of atrial fibrillation with a medical wearable under inpatient conditions (CoMMoD-A-fib)

Authors:
M Jacobsen¹, TA Dembek², AP Ziakos³, G Kobbe⁴, M Kollmann⁵, L Heinemann⁶, A Sause³, N Deubner³, S Isenmann¹, M Seyfarth³, ¹University of Witten/Herdecke - Witten - Germany, ²University of Cologne, Neurology - Cologne - Germany, ³Helios Clinic Wuppertal, Cardiology - Wuppertal - Germany, ⁴University Hospital Duesseldorf - Duesseldorf - Germany, ⁵Heinrich Heine University - Duesseldorf - Germany, ⁶Institute for Metabolic Research GmbH - Neuss - Germany.

Topic(s):
Remote Patient Monitoring and Telemedicine

Background: Atrial fibrillation (A-fib) is the most common arrhythmia; however, detection of A-fib is a challenge due to irregular occurrence. Purpose: Evaluating feasibility and performance of a non-invasive medical wearable for detection of A-fib. Methods: In the CoMMoD-A-fib trial admitted patients with a high risk for A-fib carried the wearable and an ECG Holter (control) in parallel over a period of 24 hours under not physically restricted conditions. The wearable with a tight-fit upper arm band employs a photoplethysmography (PPG) technology enabling a high sampling rate. Different algorithms (including a deep neural network) were applied to 5 min PPG datasets for detection of A-fib. Proportion of monitoring time automatically interpretable by algorithms (= interpretable time) was analyzed for influencing factors. Results In 102 inpatients (age 71.0±11.9 years; 52% male) 2306 hours of parallel recording time could be obtained; 1781 hours (77.2%) of these were automatically interpretable by an algorithm analyzing PPG derived intervals. Detection of A-Fib was possible with a sensitivity of 92.7% and specificity of 92.4% (AUC 0.96). Also during physical activity, detection of A-fib was sufficiently possible (sensitivity 90.1% and specificity 91.2%). Usage of the deep neural network improved detection of A-fib further (sensitivity 95.4% and specificity 96.2%). A higher prevalence of heart failure with reduced ejection fraction was observed in patients with a low interpretable time (p=0.080). Conclusion Detection of A-fib by means of an upper arm non-invasive medical wearable with a high resolution is reliably possible under inpatient conditions.