Abstract: P311

Epicardial progenitors are source of myofibroblasts that contribute to fibro-fatty infiltration of atrial subepicardium

Authors:
N Suffee¹, T Moore-Morris², G Dilanian¹, M Berthet¹, D Trgouet¹, M Puceat², S Hatem¹, ¹University Pierre & Marie Curie Paris VI, UMR_S1166 - Paris - France, ²Aix-Marseille University, INSERM UMR_S910 - Marseille - France,

Topic(s):
Basic Science - Cardiac Diseases: Arrhythmias

Citation:
Cardiovascular Research (2018) 114 (Supplement 1), S79

Background & Aims. Atrial fibrillation (AF), the most frequent cardiac arrhythmia, is often associated with a true atrial cardiomyopathy composed, notably, of fibro-fatty infiltrations of the subepicardium that favor atrial electrical heterogeneity. A balance between adipose tissue (AT) expansion and fibrosis appears to regulate fibro-fatty infiltration of the epicardial area. We previously showed that progenitor cells resident in the atrial epicardial layer (EPDCs) can be a source of adipocyte. Here we examined the role of epicardial layer in fibrosis of the atrial subepicardium.

Methods. Specimen of human right atrial obtained during cardiac surgery were used for histological analysis (n=95). Clinical and histological data were analyzed using proportional hazards models to examine associations between AF and histological risk scores, added to a model adjusted for classic risk factors. Model of ischemic heart failure (HF) atrial dilation and AF vulnerability was created in rats and in lineage tracing Wt-1-Cre-Rosa-tdT+/+ mice (n=8). Clinical phenotypes were obtained using echocardiography and electrocardiogram recordings.

Results. Thickness of atrial epicardial correlated with adipose tissue accumulation (r²=0.492, p<0.001) and varied with clinical history. For instance, it was associated with an history of AF (AUC 0.78, p=0.0441), HF (AUC=0.706, p=0.057) and valve mitral regurgitation with atrial dilation (AUC=0.785, p=0.004). In rat too, HF and atrial remodeling were associated with thick epicardial layer and subepicardial fibrosis. In human, thin epicardial layer, tightly associated with adipose tissue depots, was composed of a monolayer of cells expressing the epicardial progenitor protein WT1+ (EPDCs). Thick epicardial layer was composed mainly of extracellular matrix (ECM) (collagen-1+), few cells expressing mesenchymal and myofibroblast markers (FSP1+, PDGFRα+, aSMA+) were detect in the matrix. Some of them positive for PDGFRα+ and aSMA+, expressed WT-1 marker, suggesting an epicardial origin. This was supported by the observation of WT1-tomato positive cells expressing PDGFRα+, aSMA+ in the dilated atrial of WT1-tdt+ mice in HF.

Conclusion. Epicardial layer is an important component of the atrial cardiomyopathy and EPDCs can be a source of myofibroblast contributing to fibro-fatty infiltrations of the subepicardium. Mechanisms regulating the fate of EPDCs and their differentiation into myofibroblast or adipocyte will be discussed.