Sensitive detection of platelet-derived and tissue factor positive extracellular vesicles in plasma using solid-phase proximity ligation assay

Authors: A Thulin1, J Yan2, M Aberg1, C Christersson3, M Kamali-Moghadam4, A Siegbahn1, 1Uppsala University, Department of Medical Sciences, Clinical Chemistry and Science for life laboratory - Uppsala - Sweden, 2Eindhoven University of Technology, Institute for complex molecular systems - Eindhoven - Netherlands, 3Uppsala University, Department of Medical Sciences, Cardiology - Uppsala - Sweden, 4Uppsala University, Department of Immunology, Genetics and Pathology - Uppsala - Sweden.

Topic(s): Basic Science - Vascular Biology and Physiology: Microvesicles, Exosomes

Citation: Cardiovascular Research (2018) 114 (Supplement 1), S132

Funding Acknowledgements: The Swedish Research Council, the Swedish Heart-Lung foundation, the Swedish Foundation for Strategic Research and the Science for Life Laboratory

Background
Extracellular vesicles (EVs) derived from various cell-types are promising biomarkers for various diseases. They constitute a heterogeneous population ranging from 0.1 to 1 µm in size. Due to their small size and low expression levels, they are difficult to measure accurately with flow cytometry.

Aim
To design a high-sensitive assay for platelet-derived and tissue factor (TF) positive EVs in plasma based on dual antibody recognition and the solid-phase proximity ligation assay (SP-PLA) technique.

Method
Lactadherin (binds to phosphatidylserine) and cholera toxin subunit B (CT-B, binds to ganglioside) were used to capture different types of EVs. Detection antibodies were conjugated with either of two oligonucleotides that are ligated and serve as a template for a qPCR reaction when antibodies are bound in proximity. We compared the results with high-sensitivity flow cytometry (platelet-derived) and a direct coagulation activity assay (TF-positive EVs).

Results
We demonstrate that platelet-derived EVs in plasma can be measured using SP-PLA with high sensitivity and specificity. The results correlate with high-sensitivity flow cytometry (Pearson $R= 0.65$ p<0.0001), with the difference that SP-PLA detects EVs also after filtration with a 0.2 µm filter, showing that also smaller EVs are detected. The assay, using CT-B or lactadherin as capture agents, furthermore allowed detection of the more rare population of TF+ EVs. Upon spike-in with relipidated TF, the SP-PLA for TF+EVs captured by lactadherin had a detection range of at least 4 logs and a Limit of Detection (LoD) score of 0.5 pg/ml.

Conclusions
These results demonstrate that different populations of cell-derived EVs can be detected sensitively with SP-PLA and that also the smaller EVs can be measured accurately. The SP-PLA technique is thereby a suitable tool for measuring EVs in plasma, and may prove useful when studying the role of EVs in several complex diseases.